3.1.30 \(\int \cot (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx\) [30]

3.1.30.1 Optimal result
3.1.30.2 Mathematica [A] (verified)
3.1.30.3 Rubi [A] (verified)
3.1.30.4 Maple [F]
3.1.30.5 Fricas [A] (verification not implemented)
3.1.30.6 Sympy [F]
3.1.30.7 Maxima [F]
3.1.30.8 Giac [F]
3.1.30.9 Mupad [F(-1)]

3.1.30.1 Optimal result

Integrand size = 33, antiderivative size = 203 \[ \int \cot (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=-\frac {\sqrt {a} \text {arctanh}\left (\frac {2 a+b \tan ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e}+\frac {\sqrt {a-b+c} \text {arctanh}\left (\frac {2 a-b+(b-2 c) \tan ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e}+\frac {\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e} \]

output
-1/2*arctanh(1/2*(2*a+b*tan(e*x+d)^2)/a^(1/2)/(a+b*tan(e*x+d)^2+c*tan(e*x+ 
d)^4)^(1/2))*a^(1/2)/e+1/2*arctanh(1/2*(b+2*c*tan(e*x+d)^2)/c^(1/2)/(a+b*t 
an(e*x+d)^2+c*tan(e*x+d)^4)^(1/2))*c^(1/2)/e+1/2*arctanh(1/2*(2*a-b+(b-2*c 
)*tan(e*x+d)^2)/(a-b+c)^(1/2)/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2))*(a- 
b+c)^(1/2)/e
 
3.1.30.2 Mathematica [A] (verified)

Time = 1.05 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.95 \[ \int \cot (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=-\frac {\sqrt {a} \text {arctanh}\left (\frac {2 a+b \tan ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )+\sqrt {a-b+c} \text {arctanh}\left (\frac {-2 a+b-(b-2 c) \tan ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )-\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e} \]

input
Integrate[Cot[d + e*x]*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4],x]
 
output
-1/2*(Sqrt[a]*ArcTanh[(2*a + b*Tan[d + e*x]^2)/(2*Sqrt[a]*Sqrt[a + b*Tan[d 
 + e*x]^2 + c*Tan[d + e*x]^4])] + Sqrt[a - b + c]*ArcTanh[(-2*a + b - (b - 
 2*c)*Tan[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan 
[d + e*x]^4])] - Sqrt[c]*ArcTanh[(b + 2*c*Tan[d + e*x]^2)/(2*Sqrt[c]*Sqrt[ 
a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4])])/e
 
3.1.30.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 193, normalized size of antiderivative = 0.95, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 4183, 1578, 1270, 1154, 219, 1269, 1092, 219, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \tan (d+e x)^2+c \tan (d+e x)^4}}{\tan (d+e x)}dx\)

\(\Big \downarrow \) 4183

\(\displaystyle \frac {\int \frac {\cot (d+e x) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 1578

\(\displaystyle \frac {\int \frac {\cot (d+e x) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}{\tan ^2(d+e x)+1}d\tan ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 1270

\(\displaystyle \frac {a \int \frac {\cot (d+e x)}{\sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)-\int \frac {-c \tan ^2(d+e x)+a-b}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {-2 a \int \frac {1}{4 a-\tan ^4(d+e x)}d\frac {b \tan ^2(d+e x)+2 a}{\sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}-\int \frac {-c \tan ^2(d+e x)+a-b}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\int \frac {-c \tan ^2(d+e x)+a-b}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \tan ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e}\)

\(\Big \downarrow \) 1269

\(\displaystyle \frac {c \int \frac {1}{\sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)-(a-b+c) \int \frac {1}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \tan ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {2 c \int \frac {1}{4 c-\tan ^4(d+e x)}d\frac {2 c \tan ^2(d+e x)+b}{\sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}-(a-b+c) \int \frac {1}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \tan ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-(a-b+c) \int \frac {1}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \tan ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {2 (a-b+c) \int \frac {1}{4 (a-b+c)-\tan ^4(d+e x)}d\frac {(b-2 c) \tan ^2(d+e x)+2 a-b}{\sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \tan ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\sqrt {a} \text {arctanh}\left (\frac {2 a+b \tan ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )+\sqrt {a-b+c} \text {arctanh}\left (\frac {2 a+(b-2 c) \tan ^2(d+e x)-b}{2 \sqrt {a-b+c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan ^2(d+e x)}{2 \sqrt {c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e}\)

input
Int[Cot[d + e*x]*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4],x]
 
output
(-(Sqrt[a]*ArcTanh[(2*a + b*Tan[d + e*x]^2)/(2*Sqrt[a]*Sqrt[a + b*Tan[d + 
e*x]^2 + c*Tan[d + e*x]^4])]) + Sqrt[a - b + c]*ArcTanh[(2*a - b + (b - 2* 
c)*Tan[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d 
+ e*x]^4])] + Sqrt[c]*ArcTanh[(b + 2*c*Tan[d + e*x]^2)/(2*Sqrt[c]*Sqrt[a + 
 b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4])])/(2*e)
 

3.1.30.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1269
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + b*x + 
 c*x^2)^p, x], x] + Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + b*x + c*x^2)^ 
p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 1270
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)/(((d_.) + (e_.)*(x_))*((f_.) + 
 (g_.)*(x_))), x_Symbol] :> Simp[(c*d^2 - b*d*e + a*e^2)/(e*(e*f - d*g)) 
Int[(a + b*x + c*x^2)^(p - 1)/(d + e*x), x], x] - Simp[1/(e*(e*f - d*g)) 
Int[Simp[c*d*f - b*e*f + a*e*g - c*(e*f - d*g)*x, x]*((a + b*x + c*x^2)^(p 
- 1)/(f + g*x)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && FractionQ[p] 
&& GtQ[p, 0]
 

rule 1578
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_ 
)^4)^(p_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a 
+ b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && Int 
egerQ[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4183
Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*( 
x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] 
 :> Simp[f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), x 
], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n 
2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 
3.1.30.4 Maple [F]

\[\int \cot \left (e x +d \right ) \sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}d x\]

input
int(cot(e*x+d)*(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2),x)
 
output
int(cot(e*x+d)*(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2),x)
 
3.1.30.5 Fricas [A] (verification not implemented)

Time = 0.69 (sec) , antiderivative size = 2097, normalized size of antiderivative = 10.33 \[ \int \cot (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=\text {Too large to display} \]

input
integrate(cot(e*x+d)*(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2),x, algorithm= 
"fricas")
 
output
[1/4*(sqrt(c)*log(8*c^2*tan(e*x + d)^4 + 8*b*c*tan(e*x + d)^2 + b^2 + 4*sq 
rt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a)*(2*c*tan(e*x + d)^2 + b)*sqrt( 
c) + 4*a*c) + sqrt(a - b + c)*log(((b^2 + 4*(a - 2*b)*c + 8*c^2)*tan(e*x + 
 d)^4 + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*tan(e*x + d)^2 + 4*sqrt(c*tan(e*x 
+ d)^4 + b*tan(e*x + d)^2 + a)*((b - 2*c)*tan(e*x + d)^2 + 2*a - b)*sqrt(a 
 - b + c) + 8*a^2 - 8*a*b + b^2 + 4*a*c)/(tan(e*x + d)^4 + 2*tan(e*x + d)^ 
2 + 1)) + sqrt(a)*log(((b^2 + 4*a*c)*tan(e*x + d)^4 + 8*a*b*tan(e*x + d)^2 
 - 4*sqrt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a)*(b*tan(e*x + d)^2 + 2*a 
)*sqrt(a) + 8*a^2)/tan(e*x + d)^4))/e, -1/4*(2*sqrt(-c)*arctan(2*sqrt(c*ta 
n(e*x + d)^4 + b*tan(e*x + d)^2 + a)*sqrt(-c)/(2*c*tan(e*x + d)^2 + b)) - 
sqrt(a - b + c)*log(((b^2 + 4*(a - 2*b)*c + 8*c^2)*tan(e*x + d)^4 + 2*(4*a 
*b - 3*b^2 - 4*(a - b)*c)*tan(e*x + d)^2 + 4*sqrt(c*tan(e*x + d)^4 + b*tan 
(e*x + d)^2 + a)*((b - 2*c)*tan(e*x + d)^2 + 2*a - b)*sqrt(a - b + c) + 8* 
a^2 - 8*a*b + b^2 + 4*a*c)/(tan(e*x + d)^4 + 2*tan(e*x + d)^2 + 1)) - sqrt 
(a)*log(((b^2 + 4*a*c)*tan(e*x + d)^4 + 8*a*b*tan(e*x + d)^2 - 4*sqrt(c*ta 
n(e*x + d)^4 + b*tan(e*x + d)^2 + a)*(b*tan(e*x + d)^2 + 2*a)*sqrt(a) + 8* 
a^2)/tan(e*x + d)^4))/e, 1/4*(2*sqrt(-a)*arctan(2*sqrt(c*tan(e*x + d)^4 + 
b*tan(e*x + d)^2 + a)*sqrt(-a)/(b*tan(e*x + d)^2 + 2*a)) + sqrt(c)*log(8*c 
^2*tan(e*x + d)^4 + 8*b*c*tan(e*x + d)^2 + b^2 + 4*sqrt(c*tan(e*x + d)^4 + 
 b*tan(e*x + d)^2 + a)*(2*c*tan(e*x + d)^2 + b)*sqrt(c) + 4*a*c) + sqrt...
 
3.1.30.6 Sympy [F]

\[ \int \cot (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=\int \sqrt {a + b \tan ^{2}{\left (d + e x \right )} + c \tan ^{4}{\left (d + e x \right )}} \cot {\left (d + e x \right )}\, dx \]

input
integrate(cot(e*x+d)*(a+b*tan(e*x+d)**2+c*tan(e*x+d)**4)**(1/2),x)
 
output
Integral(sqrt(a + b*tan(d + e*x)**2 + c*tan(d + e*x)**4)*cot(d + e*x), x)
 
3.1.30.7 Maxima [F]

\[ \int \cot (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=\int { \sqrt {c \tan \left (e x + d\right )^{4} + b \tan \left (e x + d\right )^{2} + a} \cot \left (e x + d\right ) \,d x } \]

input
integrate(cot(e*x+d)*(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2),x, algorithm= 
"maxima")
 
output
integrate(sqrt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a)*cot(e*x + d), x)
 
3.1.30.8 Giac [F]

\[ \int \cot (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=\int { \sqrt {c \tan \left (e x + d\right )^{4} + b \tan \left (e x + d\right )^{2} + a} \cot \left (e x + d\right ) \,d x } \]

input
integrate(cot(e*x+d)*(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2),x, algorithm= 
"giac")
 
output
integrate(sqrt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a)*cot(e*x + d), x)
 
3.1.30.9 Mupad [F(-1)]

Timed out. \[ \int \cot (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)} \, dx=\int \mathrm {cot}\left (d+e\,x\right )\,\sqrt {c\,{\mathrm {tan}\left (d+e\,x\right )}^4+b\,{\mathrm {tan}\left (d+e\,x\right )}^2+a} \,d x \]

input
int(cot(d + e*x)*(a + b*tan(d + e*x)^2 + c*tan(d + e*x)^4)^(1/2),x)
 
output
int(cot(d + e*x)*(a + b*tan(d + e*x)^2 + c*tan(d + e*x)^4)^(1/2), x)